Generalizations of Inequalities for Differentiable Co-Ordinated Convex Functions

نویسندگان

چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A generalized form of the Hermite-Hadamard-Fejer type inequalities involving fractional integral for co-ordinated convex functions

Recently, a general class of the Hermit--Hadamard-Fejer inequality on convex functions is studied in [H. Budak, March 2019, 74:29, textit{Results in Mathematics}]. In this paper, we establish a generalization of Hermit--Hadamard--Fejer inequality for fractional integral based on co-ordinated convex functions.Our results generalize and improve several inequalities obtained in earlier studies.

متن کامل

Generalizations on Some Hermite-Hadamard Type Inequalities for Differentiable Convex Functions with Applications to Weighted Means

Some new Hermite-Hadamard type inequalities for differentiable convex functions were presented by Xi and Qi. In this paper, we present new generalizations on the Xi-Qi inequalities.

متن کامل

On inequalities of Hermite-Hadamard type for co-ordinated (α1,m1)-(α2,m2)-convex functions

In the paper, the authors establish some integral inequalities of Hermite-Hadamard type for co-ordinated (α1,m1)-(α2,m2)convex functions on a rectangle of the first quadrant in a plane.

متن کامل

NEW INEQUALITIES OF OSTROWSKI TYPE FOR CO-ORDINATED s-CONVEX FUNCTIONS VIA FRACTIONAL INTEGRALS

In this paper, using the identity proved [43]in for fractional integrals, some new Ostrowski type inequalities for Riemann-Liouville fractional integrals of functions of two variables are established. The established results in this paper generalize those results proved in [43].

متن کامل

NEW OSTROWSKI TYPE INEQUALITIES FOR CO-ORDINATED s-CONVEX FUNCTIONS IN THE SECOND SENSE

In this paper some new Ostrowski type inequalities for co-ordinated s-convex functions in the second sense are obtained.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Chinese Journal of Mathematics

سال: 2014

ISSN: 2314-8071

DOI: 10.1155/2014/741291